Причина светящихся глаз: отражение лучей, особый слой клетки в оболочке и другие

Причина светящихся глаз: отражение лучей, особый слой клетки в оболочке и другиеМы часто говорим о таком понятии как свет, источниках освещения, цвете изображений и объектов, но не совсем хорошо себе представляем, что такое свет и что такое цвет. Пора разобраться с этими вопросами и перейти от представления к понимаю. Осознаем мы этого или нет, но мы находимся в постоянном взаимодействии с окружающим миром и принимаем на себя воздействие различных факторов этого мира. Мы видим окружающее нас пространство, постоянно слышим звуки от различных источников, ощущаем тепло и холод, не замечаем, что пребываем под воздействием естественного радиационного фона, а также постоянно находимся в зоне излучения, которое исходит от огромного количества источников сигналов телеметрии, радио и электросвязи. Почти всё вокруг нас испускает электромагнитное излучение. Электромагнитное излучение — это электромагнитные волны, созданные различными излучающими объектами – заряженными частицами, атомами, молекулами. Волны характеризуются частотой следования, длинной, интенсивностью, а также рядом других характеристик. Вот вам просто ознакомительный пример. Тепло, исходящее от горящего костра – это электромагнитная волна, а точнее инфракрасное излучение, причем очень высокой интенсивности, мы его не видим, но можем почувствовать. Врачи сделали рентгеновский снимок – облучили электромагнитными волнами, обладающими высокой проникающей способностью, но мы этих волн не ощутили и не увидели. То, что электрический ток и все приборы, которые работают под его действием, являются источниками электромагнитного излучения, вы все, конечно же, знаете. Но в этой статье я не стану рассказать вам теорию электромагнитного излучения и его физическую природу, я постараюсь более мене простым языком объяснить, что же такое видимый свет и как образуется цвет объектов, которые мы с вами видим. Я начал говорить про электромагнитные волны, чтобы сказать вам самое главное: Свет – это электромагнитная волна, которая испускается нагретым или находящимся в возбужденном состоянии веществом. В роли такого вещества может выступить солнце, лампа накаливания, светодиодный фонарик, пламя костра, различного рода химические реакции. Примеров может быть достаточно много, вы и сами можете привести их в гораздо большем количестве, чем я написал. Необходимо уточнить, что под понятием свет мы будем подразумевать видимый свет. Всё выше сказанное можно представить в виде вот такой картинки (Рисунок 1). Причина светящихся глаз: отражение лучей, особый слой клетки в оболочке и другие Рисунок 1 – Место видимого излучения среди других видов электромагнитного излучения.

На Рисунке 1 видимое излучение представлено в виде шкалы, которая состоит из «смеси» различных цветов. Как вы уже догадались – это спектр. Через весь спектр (слева направо) проходит волнообразная линия (синусоидальная кривая) – это электромагнитная волна, которая отображает сущность света как электромагнитного излучения. Грубо говоря, любое излучение – есть волна. Рентгеновское, ионизирующее, радиоизлучение (радиоприемники, телевизионная связь) – не важно, все они являются электромагнитными волнами, только каждый вид излучения имеет разную длину этих волн. Синусоидальная кривая является всего лишь графическим представлением излучаемой энергии, которая изменяется во времени. Это математическое описание излучаемой энергии. На рисунке 1 вы также можете заметить, что изображенная волна как бы немного сжата в левом углу и расширена в правом. Это говорит о том, что она имеет разную длину на различных участках. Длина волны – это расстояние между двумя её соседними вершинами. Видимое излучение (видимый свет) имеет длину волны, которая изменяется в пределах от 380 до 780nm (нанометров). Видимый свет — всего лишь звено одной очень длинной электромагнитной волны.

От света к цвету и обратно

Ещё со школы вы знаете, что если на пути луча солнечного света поставить стеклянную призму, то большая часть света пройдет через стекло, и вы сможете увидеть разноцветные полосы на другой стороне призмы. То есть изначально был солнечный свет — луч белого цвета, а после прохождения через призму разделился на 7 новых цветов.

Это говорит о том, что белый свет состоит из этих семи цветов. Помните, я только что говорил, что видимый свет (видимое излучение) — это электромагнитная волна, так вот, те разноцветные полосы, которые получились после прохождения солнечного луча через призму – есть отдельные электромагнитные волны. То есть получаются 7 новых электромагнитных волн.

Смотрим на рисунок 2. Причина светящихся глаз: отражение лучей, особый слой клетки в оболочке и другие Рисунок 2 – Прохождение луча солнечного света через призму.

Каждая из волн имеет свою длину. Видите, вершины соседних волн не совпадают друг с другом: потому что красный цвет (красная волна) имеет длину примерно 625-740nm, оранжевый цвет (оранжевая волна) – примерно 590-625nm, синий цвет (синяя волна) – 435-500nm., не буду приводить цифры для остальных 4-х волн, суть, я думаю, вы поняли. Каждая волна – это излучаемая световая энергия, то есть красная волна излучает красный свет, оранжевая – оранжевый, зеленая – зеленый и т.д. Когда все семь волн излучаются одновременно, мы видим спектр цветов. Если математически сложить графики этих волн вместе, то мы получим исходный график электромагнитной волны видимого света – получим белый свет. Таким образом, можно сказать, что спектр электромагнитной волны видимого света – это сумма волн различной длины, которые при наложении друг на друга дают исходную электромагнитную волну. Спектр «показывает из чего состоит волна». Ну, если совсем просто сказать, то спектр видимого света – это смесь цветов, из которых состоит белый свет (цвет). Надо сказать, что и у других видов электромагнитного излучения (ионизирующего, рентгеновского, инфракрасного, ультрафиолетового и т.д.) тоже есть свои спектры.

Любое излучение можно представить в виде спектра, правда таких цветных линий в его составе не будет, потому, как человек не способен видеть другие типы излучений. Видимое излучение – это единственный вид излучений, который человек может видеть, потому-то это излучение и назвали – видимое. Однако сама по себе энергия определенной длины волны не имеет никакого цвета. Восприятие человеком электромагнитного излучения видимого диапазона спектра происходит благодаря тому, что в сетчатке глаза человека располагаются рецепторы, способные реагировать на это излучение. Но только ли путем сложения семи основных цветов мы можем получить белый цвет? Отнюдь. В результате научных исследований и практических экспериментов было установлено, что все цвета, которые способен воспринимать человеческий глаз, можно получить смешиванием всего лишь трех основных цветов. Три основных цвета: красный, зеленый, синий. Если с помощью смешивания этих трех цветов можно получить практически любой цвет, значит можно получить и белый цвет! Посмотрите на спектр, который был приведен на рисунке 2, на спектре четко просматриваются три цвета: красный, зеленый и синий. Именно эти цвета лежат в основе цветовой модели RGB (Red Green Blue). Проверим как это работает на практике. Возьмем 3 источника света (прожектора) — красный, зеленый и синий. Каждый из этих прожекторов излучает только одну электромагнитную волну определенной длины. Красный – соответствует излучению электромагнитной волны длиной примерно 625-740nm (спектр луча состоит только из красного цвета), синий излучает волну длиной 435-500nm (спектр луча состоит только из синего цвета), зеленый – 500-565nm (в спектре луча только зеленый цвет). Три разных волны и больше ничего, нет никакого разноцветного спектра и дополнительных цветов. Теперь направим прожектора так, чтобы их лучи частично перекрывали друг друга, как показано на рисунке 3. Причина светящихся глаз: отражение лучей, особый слой клетки в оболочке и другие Рисунок 3 — Результат наложения красного, зеленого и синего цветов.

Посмотрите, в местах пересечения световых лучей друг с другом образовались новые световые лучи – новые цвета. Зеленый и красный образовали желтый, зеленый и синий – голубой, синий и красный — пурпурный. Таким образом, изменяя яркость световых лучей и комбинируя цвета можно получить большое многообразие цветовых тонов и оттенков цвета.

Обратите внимание на центр пересечения зеленого, красного и синего цветов: в центре вы увидите белый цвет. Тот самый, о котором мы недавно говорили. Белый цвет – это сумма всех цветов. Он является «самым сильным цветом» из всех видимых нами цветов. Противоположный белому – черный цвет. Черный цвет – это полное отсутствие света вообще.

То есть там, где нет света — там мрак, там всё становится черным. Пример тому — иллюстрация 4.

Причина светящихся глаз: отражение лучей, особый слой клетки в оболочке и другие

Рисунок 4 – Отсутствие светового излучения

Я как-то незаметно перехожу от понятия свет к понятию цвет и вам ничего не говорю. Пора внести ясность. Мы с вами выяснили, что свет – это излучение, которое испускается нагретым телом или находящимся в возбужденном состоянии веществом.

Основными параметрами источника света являются длина волны и сила света. Цвет – это качественная характеристика этого излучения, которая определяется на основании возникающего зрительного ощущения.

Конечно же, восприятие цвета зависит от человека, его физического и психологического состояния. Но будем считать, что вы достаточно хорошо себя чувствуете, читаете эту статью и можете отличить 7 цветов радуги друг от друга.

Отмечу, что на данный момент, речь идет именно о цвете светового излучения, а не о цвете предметов. На рисунке 5 показаны зависимые друг от друга параметры цвета и света.

Причина светящихся глаз: отражение лучей, особый слой клетки в оболочке и другие

Причина светящихся глаз: отражение лучей, особый слой клетки в оболочке и другие

Рисунки 5 и 6– Зависимость параметров цвета от источника излучения Существуют основные характеристики цвета: цветовой тон (hue), яркость (Brightness), светлость (Lightness), насыщенность (Saturation).

Цветовой тон (hue)

Причина светящихся глаз: отражение лучей, особый слой клетки в оболочке и другие – Это основная характеристика цвета, которая определяет его положение в спектре. Вспомните наши 7 цветов радуги – это, иначе говоря, 7 цветовых тонов. Красный цветовой тон, оранжевый цветовой тон, зелёный цветовой тон, синий и т.д. Цветовых тонов может быть довольно много, 7 цветов радуги я привел просто в качестве примера. Следует отметить, что такие цвета как серый, белый, черный, а также оттенки этих цветов не относятся к понятию цветовой тон, так как являются результатом смешивания различных цветовых тонов.

  • Яркость (Brightness)

– Характеристика, которая показывает, насколько сильно излучается световая энергия того или иного цветового тона (красного, желтого, фиолетового и т.п.).

А если она вообще не излучается? Если не излучается – значит, её нет, а нет энергии — нет света, а там где нет света, там черный цвет. Любой цвет при максимальном снижении яркости становится черным цветом.

Например, цепочка снижения яркости красного цвета: красный — алый — бордовый — бурый — черный. Максимальное увеличение яркости, к примеру, того же красного цвета даст «максимально красный цвет».

  1. Светлость (Lightness)

– Степень близости цвета (цветового тона) к белому. Любой цвет при максимальном увеличении светлости становится белым. Например: красный — малиновый — розовый — бледно-розовый — белый. Насыщенность (Saturation)

– Степень близости цвета к серому цвету. Серый цвет является промежуточным цветом между белым и черным. Серый цвет образуется путем смешивания в равных количествах красного, зеленого, синего цвета с понижением яркости источников излучения на 50%.

Насыщенность изменяется непропорционально, то есть понижение насыщенности до минимума не означает, что яркость источника будет снижена до 50%.

Если цвет уже темнее серого, при понижении насыщенности он станет ещё более темным, а при дальнейшем понижении и вовсе станет черным цветом.

Такие характеристики цвета как цветовой тон (hue), яркость (Brightness), и насыщенность (Saturation) лежат в основе цветовой модели HSB (иначе называемая HCV). Для того чтобы разобраться в этих характеристиках цвета, рассмотрим на рисунке 7 палитру цветов графического редактора Adobe Photoshop. Рисунок 7 – Палитра цветов Adobe Photoshop

Если вы внимательно посмотрите на рисунок, то обнаружите маленький кружочек, который расположен в самом верхнем правом углу палитры. Этот кружочек показывает, какой цвет выбран на цветовой палитре, в нашем случае это красный. Начнем разбираться. Сначала посмотрим на числа и буквы, которые расположены в правой половине рисунка.

Это параметры цветовой модели HSB. Самая верхняя буква – H (hue, цветовой тон). Он определяет положение цвета в спектре. Значение 0 градусов означает, что это самая верхняя (или нижняя) точка цветового круга – то есть это красный цвет. Круг разделен на 360 градусов, т.е. получается, в нем 360 цветовых тонов.

Следующая буква – S (saturation, насыщенность). У нас указано значение 100% — это значит, что цвет будет «прижат» к правому краю цветовой палитры и имеет максимально возможную насыщенность. Затем идет буква B (brightness, яркость) – она показывает, насколько высоко расположена точка на палитре цветов и характеризует интенсивность цвета.

Значение 100% говорит о том, что интенсивность цвета максимальна и точка «прижата» к верхнему краю палитры. Буквы R(red), G(green), B(blue) — это три цветовых канала (красный, зеленый, синий) модели RGB. В каждом в каждом из них указывается число, которое обозначает количество цвета в канале.

Вспомните пример с прожекторами на рисунке 3, тогда мы выяснили, что любой цвет может быть получен путем смешивания трех световых лучей. Записывая числовые данные в каждый из каналов, мы однозначно определяем цвет. В нашем случае 8-битный канал и числа лежат в диапазоне от 0 до 255.

Числа в каналах R, G, B показывают интенсивность света (яркость цвета). У нас в канале R указано значение 255, а это значит, что это чистый красный цвет и у него максимальная яркость. В каналах G и B стоят нули, что означает полное отсутствие зеленого и синего цветов. В самой нижней графе вы можете увидеть кодовую комбинацию #ff0000 — это код цвета.

У любого цвета в палитре есть свой шестнадцатиричный код, который определяет цвет. Есть замечательная статья Теория цвета в цифрах, в которой автор рассказывает как определять цвет по шестнадцатеричному коду.

На рисунке вы также можете заметить перечеркнутые поля числовых значений с буквами «lab» и «CMYK». Это 2 цветовых пространства, по которым тоже можно характеризовать цвета, о них вообще отдельный разговор и на данном этапе незачем вникать в них пока не разберетесь с RGB. Можете открыть цветовую палитру Adobe Photoshop и поэксперовать со значением цветов в полях RGB и HSB. Вы заметите, что изменение числовых значений в каналах R, G, и B приводит к изменению числовых значений в каналах H, S, B.

Читайте также:  В каком возрасте у собаки поменяются молочные зубки на постоянные

Цвет объектов

Пора поговорить о том, как так получается, что окружающие нас предметы принимают свой цвет, и почему он меняется при различном освещении этих предметов.

Объект можно увидеть, только если он отражает или пропускает свет.

Если же объект почти полностью поглощает падающий свет, то объект принимает черный цвет. А когда объект отражает почти весь падающий свет, он принимает белый цвет.

Таким образом, можно сразу сделать вывод о том, что цвет объекта будет определяться количеством поглощенного и отраженного света, которым этот объект освещается.

Способность отражать и поглощать свет определятся молекулярной структурой вещества, иначе говоря — физическими свойствами объекта. Цвет предмета «не заложен в нем от природы»! От природы в нем заложены физические свойства: отражать и поглощать.

Цвет объекта и цвет источника излучения неразрывно связаны между собой, и эта взаимосвязь описывается тремя условиями.

Первое условие: Цвет объект может принимать только при наличии источника освещения. Если нет света, не будет и цвета! Красная краска в банке будет выглядит черной. В темной комнате мы не видим и не различаем цветов, потому что их нет. Будет черный цвет всего окружающего пространства и находящихся в нем предметов.

Второе условие: Цвет объекта зависит от цвета источника освещения. Если источник освещения красный светодиод, то все освещаемые этим светом объекты будут иметь только красные, черные и серые цвета.

  • И наконец, Третье условие: Цвет объекта зависит от молекулярной структуры вещества, из которого состоит объект.
  • В следующей статье речь пойдет о новой характеристике цвета — цветовой температуре.

Источник: https://habr.com/post/202966/

Почему глаза животных светятся в темноте, а глаза человека выглядят красными на фото

Причина светящихся глаз: отражение лучей, особый слой клетки в оболочке и другие© www.ateistru.net

Когда мы замечаем на фотографиях или в фильмах о природе глаза животных в свете фар, мы видим, что глаза эти ярко сверкают, отражая свет. А человеческие глаза на фотографиях, бывает, отблёскивают красным. Чем же вызвано это сияние?

Блеск красных человеческих глаз можно сравнить с блеском луны. Это свет, пришедший от другого, более крупного источника, а затем отражённый глазами. Вспышка камеры проходит сквозь зрачок, и достигает задней части глаза — сетчатки.

Сетчатка, в свою очередь, отражает свет обратно в сторону камеры, однако делает она это очень своеобразно. Как и другие внутренности нашего тела, сетчатка представляет собой весьма неприглядный хаос из кровеносных сосудов.

Именно они являются причиной того, что свет, отражённый от сетчатки, получается красным. Мы буквально окрашиваем свет своей кровью.

Но что насчёт глаз животных? Ведь у собак, кошек и оленей тоже есть кровь, но их глаза на фотографиях не похожи на глаза вампира. Их глаза сверкают в темноте из-за особого слоя, который находится позади сетчатки их глаз. Этот слой называется «tapetum lucidum» (лат. tapetum — покрывало).

И он отражает свет, направленный в глаз животного, потому что это — именно то, для чего он предназначен. Кошки, собаки, олени и другие ночные животные имеют неплохое ночное зрение, потому что свет, попавший в их глаза, сразу же достигает этого особого слоя позади сетчатки, почти не затрагивая фоторецепторы.

Затем свет, отражённый от особого слоя, вновь проходит через глаз животного. Таким способом животные получают больше фотонов от объекта, который они рассматривают.

Отражающая способность слоя tapetum lucidum намного выше, чем отражающая способность сетчатки. Красноты в глазах животных не наблюдается потому, что красный цвет заменяется цветом вещества, из которого состоит отражающий слой.

Хотя пигменты сетчатки и зрачка тоже влияют на цвет сияния, но это влияние очень незначительно, и большая часть света, отражённая глазом животного, возвращается назад почти без изменений. Именно из-за отсутствия особого слоя глаза у людей могут выглядеть красными. Причём выглядят они так только на фотографиях, а не в лучах фонаря.

У сетчатки низкая отражающая способность, и сиять она может только во время очень сильной и кратковременной вспышки. Вспышка фотокамеры даёт огромное количество света, и этот свет направляют человеку в лицо. Некоторые камеры могут устранять «эффект красных глаз», делая две вспышки в течение очень краткого промежутка времени.

Во время первой вспышки наш зрачок рефлекторно сжимается, и не впускает в глаз слишком много света, который затем может быть отражён сетчаткой, и из-за которого наши глаза на фото будут похожи на глаза вампира.

Дети, которых воспитали животные

Кто из нас не знаком с трогательной повестью Редьярда Киплинга о «Лягушонке» Маугли — мальчике, выросшем в джунглях? Даже если вы не читали «Книгу джунглей», то наверняка смотрели мультфильмы по её мотивам.

Увы, реальные истории детей, воспитанных животными, не так романтичны и сказочны, как произведения английского писателя и далеко не всегда заканчиваются хэппи-эндом.

Вашему вниманию — современные человеческие детёныши, у которых среди друзей не было ни мудрого Каа, ни добродушного Балу, ни отважного Акелы, однако их приключения не оставят вас равнодушными, ведь проза… Читать далее…

Причина светящихся глаз: отражение лучей, особый слой клетки в оболочке и другие

10 тайн мира, которые наука, наконец, раскрыла

«Движущиеся камни», странные ноги жирафов, поющие песчаные дюны и другие потрясающие загадки природы, которые нам удалось разгадать за последние несколько лет. 1.

Секрет «движущихся камней» в Долине Смерти С 1940-го года до недавнего времени Рейстрек-Плайя, высохшее озеро с ровным дном, находящееся в Долине Смерти в Калифорнии, было местом, где наблюдался феномен «движущихся камней».

Над этой тайной ломало голову множество людей. Годами или даже десятилетиями, некая сила, казалось, двигала… Читать далее…

Причина светящихся глаз: отражение лучей, особый слой клетки в оболочке и другие

10 попыток объяснить существование жизни без дарвиновской Теории эволюции

После кругосветного путешествия Чарльз Дарвин окончательно уверовал в то, что в природе преобладает система, которую он назвал «естественный отбор», и которая, в свою очередь, вызывает процесс эволюции.

Проще говоря, организмы, которые живут достаточно долго для того, чтобы воспроизвести потомство, передают ему свою генетическую память. Если же организм по тем или иным причинам погиб, не оставив потомства, его характеристики не появятся в генофонде.

Со временем наращивание характеристик может привести к возникновению совершенно новых… Читать далее…

Причина светящихся глаз: отражение лучей, особый слой клетки в оболочке и другие

Источник: https://www.factroom.ru/facts/55987/

Типы нервных клеток сетчатки

Биполяр — типичная нервная клетка, имеющая приемный отросток — дендрит, врастающий в синаптическое окончание одного или нескольких рецепторов; тело с ядром и аксон, передающий возбуждение на выходной нейрон сетчатки — ганглиозную клетку.

Часть биполяров связана только с колбочками (колбочковые биполяры), другие связаны только с палочками (палочковые биполяры). Третий нервный слой сетчатки (после рецепторов и биполяров) образуют тела ганглиозных клеток — выходных нейронов сетчатки, чьи аксоны слагают зрительный нерв.

По нему сигналы, закодированные в последовательность нервных импульсов, передаются в зрительные отделы мозга. Таким образом осуществляется прямой путь передачи нервного зрительного сигнала: рецептор — биполяр — ганглиозная клетка.

Кроме того, в наружном синаптическом слое расположены горизонтальные клетки, осуществляющие латеральные (боковые) взаимодействия. Горизонтальные клетки расположены отдельными слоями. Функция этих клеток не до конца ясна.

Амакриновые клетки — не имеющие аксона. Они влияют на передачу сигнала с биполяров на ганглиозные клетки. Различают несколько десятков разных амакриновых клеток с разным строением и разными функциями. Амакриновые клетки — это «мозг» сетчатки. В них происходит начальная (а у рыб, земноводных и пресмыкающихся практически полная) обработка зрительного сигнала.

Ганглиозные клетки сетчатки — это импульсные нервные клетки. Одни ганглиозные клетки отвечает импульсной посылкой на увеличение освещения, другие, наоборот, тормозятся светом.

Одни клетки отвечают на постоянное освещение длительным разрядом, другие — коротким. Есть ганглиозные клетки, кодирующие конфигурацией разряда импульсов цвет освещения.

У высших позвоночных дальнейшая обработка зрительного изображения происходит в зрительных зонах коры головного мозга.

4Пигментный эпителий и сосудистая оболочка глаза человека содержит большое количество меланина , который поглощает свет, не поглощенный фоторецепторным слоями сетчатки. Это важно, поскольку отражение может сильно исказить изображение.

При слабом освещении, однако, отражение может оказаться полезным, поскольку дает еще одну возможность непоглощенному свету взаимодействовать с зрительным пигментом наружных сегментов.

Слой, который отражает свет у многих ночных и сумеречных животных, называется зеркальцем(tapetumlucidum)(буквально — светящийся ковер).

Каждому из вас приходилось видеть, как вспыхивают ярким фосфорическим блеском глаза кошки, этот зеленый блеск отраженное свечение.Они видны так далеко, потому что сноп лучей, пройдя через роговицу и хрусталик, фокусируется на сферической внутренней поверхности глаза и, отразившись от нее, снова попадает в хрусталик, роговицу и выходит в виде узкого направленного пучка лучей.

Но почему отраженный свет не белый, а зеленый?

Глаза кошки сверкают изумрудами, потому что между сосудистой оболочкой и сетчаткой есть еще один слой. Он играет роль зеркала и отражает свет. Такое зеркальце позволяет полнее использовать большую долю попавшего в глаз света и помогает лучше видеть в темноте. У кошек зеркальце ярко-зеленое.

А вот глаза волка, собаки, крокодила сверкают пурпурным светом. У них зеркальце белое.Глаза людей не должны светиться — в человеческом глазу нет зеркальца, сетчатку подстилает слой черных клеток, содержащих особый черный пигмент — фусцин. Фусцин почти не отражает лучей.

Могу похвастаться: мне несколько раз удавалось наблюдать это явление. Наиболее яркое свечение я дважды наблюдал в длинном сумрачном коридоре, в конце которого было окно. В первый раз мне встретилась девочка лет четырех.

Свет из окна падал ей прямо в глаза, и они несколько мгновений светились ярким кошачьим блеском.

Существует три типа зеркалец сосудистой оболочки: фиброзный , клеточный и гуаниновый .

Зеркальца фиброзного типа (tapetum fibrosum) найдены у многих копытных . Они образованы отложениями белых коллагеновых волокон в сосудистой оболочке

Клеточный тип (tapetum cellulosum) обеспечивает более эффективное зеркало, он у хищных животных ,у домашних кошек . Клеточные зеркальца обнаружены и у тюленей . Этот тип зеркальца, как следует из его названия, образован не коллагеновыми волокнами, а клетками. Клетки заполнены сократимыми нитями, которые, перекрещиваясь между собой, образуют зеркальную сеть.

Гуаниновый тип зеркалец (tapetum guaninum) обнаружен у костистых рыб . В этом случае клетки заполнены не волокнами, а пластинками гуаниновых кристаллов

5. Восприятие света – основная функция сетчатки, которая обеспечивается за счет работы двух типов рецепторов: палочек — 100-120 млн. и колбочек – 7 млн., названных так из-за своей формы.

Колбочки бывают трех различных типов, содержащих по одному пигменту — сине-голубому, зеленому и красному, обеспечивая еще одну немаловажную функцию сетчатки – цветоощущение.

Палочки содержат пигмент — родопсин, который поглощает часть спектра света в диапазоне красных лучей. Поэтому, в ночное время функционируют, в основном, палочки, в дневное – колбочки. Наибольшая плотность колбочек в центральной зоне — фовеа.

Дальше к периферии плотность уменьшается. Центральная зона, наоборот, свободна от палочек — плотность палочек максимальна в кольце вокруг фовеа, а затем их количество также уменьшается к периферии.

У колбочек некоторых позвоночных, стоящих в эволюционной лестнице «не ниже» земноводных, часто в эллипсоиде развиваются масляные капли . Часто они содержат каротиноиды, придающие им заметную окраску. У дневных птиц они красные, оранжевые, желтые или зеленые, а у ночных — либо бесцветные, либо желтоватые. У волнистого попугайчика, например, присутствуют четыре класса пигментов колбочек.

Помимо развития в эллипсоиде масляных капель, иногда в миоиде формируется другой органоид — параболоид. В отличие от масляных капель параболоид не окрашен, и вместо каротиноидов содержит повышенную концентрацию гликогена. Имея значительно более высокий коэффициент отражения, чем окружение, он также играет существенную роль в фокусировке света на наружных сегментах.

Другой характерной чертой сетчатки многих позвоночных является присутствие двойных , а иногда и тройных колбочек. Они встречаются у рыб, земноводных, пресмыкающихся, птиц, утконос и сумчатых, они не обнаружены у млекопитающих. Двойные колбочки состоят из двух слившихся миоидами колбочек.

Две слившиеся колбочки обычно сильно различаются по размеру, большая (или главная) колбочка часто имеет масляную каплю, а меньшая — очень большой параболоид. Это, однако, далеко не всегда именно так. Помимо двойных колбочек, в сетчатке многих костистых рыб развиваются парные (близнецовые) колбочки . оба компонента парных колбочек — по структурно, равные.

В сетчатке некоторых рыб присутствуют все четыре формы колбочек. В сетчатке усача (Barbus barbus) имеются короткие одиночные колбочки, длинные одиночные колбочки, парные колбочки и двойные колбочки (из неравных компонентов), которые распределены там без особого порядка.

Двоятся не только колбочки — двойные палочки часто обнаруживаются в сетчатках пресмыкающихся, особенно змей и гекконов. Палочки также имеют различные формы.в сетчатке лягушки палочки представлены двумя типами: красных и зеленых.

Заканчивая эту главу, мне хочется обратить ваше внимание на одно странное и необъясненное обстоятельство. Исследования ученых, изучавших цветовое зрение у самых различных живых существ, показывают, что цвета умеют различать и насекомые, и земноводные, и птицы, и млекопитающие.

Но, как это ни поразительно, некоторые животные, стоящие на весьма высокой ступени эволюционного развития, не различают цветов. Так, цветнослепыми являются собаки. Перед этим фактом (если это, конечно, не результат ошибки) остается лишь развести руками, столь непонятен он с точки зрения эволюционной теории. Правда, можно сделать одно полуфантастическое предположение.

Нынче выяснена причина цветнослепоты — этот недостаток зрения объясняется генетическими причинами и является наследственным. например, у многих дневных животных количество колбочек в сетчатке превышает количество палочек. Есть даже такие, у которых палочки в сетчатке вовсе не обнаружены, например, некоторые змеи, ящерицы, черепахи.

В сетчатках некоторых птиц — орлов, голубей — не только много колбочек, но бывает не одно, а даже два и три желтых пятна.

Глаз голубя воспринимает свет разной длины волны (разного цвета) так же, как глаз человека. Различие состоит лишь в том, что голубь видит синие цвета чуть лучше. В этом мы уступаем голубям, потому что наш хрусталик слегка окрашен в желтый цвет и плохо пропускает синие лучи.

А вот глаз кошки содержит раза в три меньше колбочек, чем глаз человека. Совы, морские свинки, крысы, возможно, совсем не различают цветов: в сетчатках этих животных почти нет колбочек.

Однако ученые предполагают, что в сетчатках некоторых животных могут существовать колбочкоподобные палочки, то есть палочки, которые реагируют не только на свет, но и на цвет.

Фоторецепторы: фотомеханические движенияЭти движения возникают в результате активности актиновых филаментов миоида. При действии яркого света миоид палочек расслабляется, и наружные сегменты смещаются в сторону пигментного эпителия.

Читайте также:  Симптоматика наличия лимфомы кошки: эффективные способы лечения заболевания

Напротив, миоиды колбочек сокращаются и выдвигают наружные сегменты в сторону источника света. Фотомеханические движения достаточно медленны и измеряются минутами у птиц и десятками минут у рыб.

Эти механические движения фоторецепторов сопровождаются сходными медленными движениями пигментных гранул в микроворсинки клеток пигментного эпителия.

Гранулы смещаются в микроворсинки, защищая палочки и повышая чувствительность колбочек на ярком свету и сдвигаются к ПЭС при слабом освещении. Можно сказать, что животные, у которых развита фотомеханическая система, имеют две сетчатки — одну для яркого света, другую — для тусклого.

Организация центров зрительной системы. В ходе эволюции зрительной системы позвоночных наблюдается усложнение ее центральных отделов при относительной неизменности периферического отдела — сетчатки.

У рыб и амфибий ганглиозные клетки сетчатки посылают свои аксоны непосредственно в высшие зрительные центры — крышу среднего мозга. В тектуме лягушки насчитывается до 250 тыс. нервных клеток, тела которых образуют несколько глубинных слоев крыши среднего мозга.

Несмотря на то что по ходу зрительного нерва волокна переплетаются, переходя из пучка в пучок, их окончания в нейропильной оболочке тектума отражают план расположения элементов сетчатки, т. е. образуют локальную проекцию определенных квадрантов сетчатки на средний мозг.

У рептилий зрительным центром является не только крыша среднего мозга, но и корковая пластинка больших полушарий, куда конвергируют нейроны различных сенсорных систем.

У птиц ассоциативные функции связаны с развитием многочисленных ядер таламуса. Ганглиозные клетки сетчатки птиц посылают свои аксоны помимо среднего мозга в многочисленные ядра таламуса. Возникает добавочное сигнальное переключение на нейроны этих ядер с последующим адресом в стриатум.

У млекопитающих к зрительным центрам добавляются сложные системы нейронов зрительной коры. Тенденция к таламокортикальному представительству намечается уже у круглоротых, где доминирует ретинотектальный путь. В ходе эволюции происходит переход от ретинотектального к ретиноталамокортикальному представительству, вызывая прогрессивное развитие переднего мозга (рис. 4.48).

Волокна зрительных нервов, перекрещиваясь между собой, образуют хиазм. У низших позвоночных происходит полный перекрест, у млекопитающих сетчатка одного глаза имеет и контра- , и ипсилатеральную проекции.

Большая часть волокон поступает в промежуточный мозг — наружное коленчатое тело. Аксоны его клеток вдут в 17-е поле коры.

Часть волокон сетчатки направляется к крыше среднего мозга в передние бугры четверохолмия, в претектальную область и подушку в таламусе. Из подушки информация передается на область 18-го и 19-го полей коры.

Претектальная область ответственна за регуляцию зрачка, а передние бугры четверохолмия связаны с

Рис. 4.48. Основные типы организации зрительной системы у позвоночных. А — млекопитающие; Б — рептилии, птицы; В — рыбы, амфибии; 1 — передний мозг, 2 — промежуточный мозг, 3 — средний мозг, 4 — мозжечок

глазодвигательными центрами и высшими отделами зрительной системы. Древний ретинотектальный путь в средний мозг млекопитающих не утрачивает своего значения и обеспечивает различения света и тени, обнаружение движения объекта.

Афферентные волокна из наружного коленчатого тела оканчиваются в слое IV и в глубине слоя III 17-го поля зрительной коры (рис. 4.49). Поле 17 являетсяцентральным полем зрительной коры, а 18-е и 19-е поля — периферическими. Ассоциативные волокна из поля 17 направляются в 18-е и 19-е поля. Между сетчаткой и полем 17 коры существует упорядоченное

Не нашли то, что искали? Воспользуйтесь поиском:

Источник: https://studopedia.ru/15_82556_VIIIkontrol-za-soblyudeniem-pravil.html

Анатомия глаза человека: строение и функции. Просто и доступно

Зрение — один из важнейших механизмов в восприятии человеком окружающего мира. С помощью визуальной оценки человек получает порядка 90 % информации, поступающей извне.

Безусловно, при недостаточном или полностью отсутствующем зрении организм приспосабливается, частично компенсируя утерю с помощью других органов чувств: слуха, обоняния и осязания.

Тем не менее ни одно из них не способно восполнить тот пробел, который возникает при недостатке зрительного анализа.

Как устроена сложнейшая оптическая система человеческого глаза? На чём основан механизм визуальной оценки и какие этапы он включает? Что происходит с глазом при потере зрения? Обзорная статья поможет разобраться в этих вопросах.

Анатомия глаза человека

Зрительный анализатор включает 3 ключевых компонента:

  • периферический, представленный непосредственно глазным яблоком и прилегающими тканями;
  • проводниковый, состоящий из волокон зрительного нерва;
  • центральный, сосредоточенный в коре головного мозга, где происходит формирование и оценка зрительного образа.

Рассмотрим строение глазного яблока, чтобы понять, какой путь проходит увиденная картинка и от чего зависит её восприятие.

анатомия глаза

Строение глаза: анатомия зрительного механизма

От правильного строения глазного яблока напрямую зависит, какой будет увиденная картинка, какая информация поступит в клетки головного мозга и каким образом она будет обработана.

В норме этот орган выглядит в форме шара диаметром 24–25 мм (у взрослого человека). Внутри него находятся ткани и структуры, благодаря которым картинка проецируется и передается на участок мозга, способный обработать полученную информацию.

Структуры глаза включают несколько различных анатомических единиц, которые мы и рассмотрим.

Покровная оболочка — роговица

Роговица представляет собой особый покров, защищающий наружную часть глаза. В норме она абсолютно прозрачна и однородна, поскольку выполняет функцию считывания информации.

Через неё проходят световые лучи, благодаря которым человек может воспринимать трёхмерное изображение. Роговица бескровна, поскольку не содержит ни одного кровеносного сосуда.

Она состоит из 6 различных слоёв, каждый из которых несёт определённую функцию:

  • Эпителиальный слой. Клетки эпителия находятся на наружной поверхности роговицы. Они регулируют количество влаги в глазу, которая поступает из слёзных желёз и насыщается кислородом за счёт слёзной плёнки. Микрочастицы — пыль, мусор и прочее — при попадании в глаз могут легко нарушить целостность роговицы. Впрочем, этот дефект, если он не затронул более глубокие слои, не представляет опасности для здоровья глаза, поскольку эпителиальные клетки быстро и относительно безболезненно восстанавливаются.
  • Боуменова мембрана. Этот слой также относится к поверхностным, поскольку располагается сразу за эпителиальным. Он, в отличие от эпителия, не способен восстанавливаться, поэтому его травмы неизменно приводят к ухудшению зрения. Мембрана отвечает за питание роговицы и участвует в обменных процессах, протекающих в клетках.
  • Строма. Этот довольно объёмный слой состоит из волокон коллагена, которые заполняют собой пространство.
  • Десцеметова мембрана. Тоненькая мембранка на границе стромы отделяет её от эндотелиальной массы.
  • Эндотелиальный слой. Эндотелий обеспечивает идеальную пропускную способность роговицы за счёт удаления лишней жидкости из роговичного слоя. Она плохо восстанавливается, поэтому с возрастом становится менее плотной и функциональной. В норме плотность эндотелия составляет от 3,5 до 1,5 тысяч клеток на 1 мм2 в зависимости от возраста. Если этот показатель падает ниже 800 клеток, у человека может развиться отёк роговицы, в результате которого резко снижается чёткость зрения. Такое поражение — естественный итог глубокой травмы или серьёзного воспалительного заболевания глаз.
  • Слёзная плёнка. Последний роговичный слой отвечает за санацию, увлажнение и смягчение глаз. Слёзная жидкость, поступающая в роговицу, смывает микрочастички пыли, загрязнения и улучшает проницаемость кислорода.

Функции радужки в анатомии и физиологии глаза

За передней камерой глаза, заполненной жидкостью, располагается радужная оболочка.

От её пигментации зависит цвет глаз человека: минимальное содержание пигмента обусловливает голубой цвет радужки, среднее значение характерно для зелёных глаз, а максимальный процент присущ кареглазым и черноглазым людям.

Именно поэтому большая часть деток рождается голубоглазыми — у них синтез пигмента ещё не отрегулирован, поэтому радужка чаще всего светлая. С возрастом эта характеристика меняется, и глазки становятся темнее.

Анатомическое строение радужки представлено мышечными волокнами. Они молниеносно сокращаются и расслабляются, регулируя проникающий световой поток и изменяя размер пропускного канальца.

В самом центе радужки располагается зрачок, который под действием мышц изменяет диаметр в зависимости от степени освещённости: чем больше световых лучей попадает на поверхность глаза, тем уже становится просвет зрачка. Этот механизм может нарушаться под действием медицинских препаратов или в результате болезни.

Краткосрочное изменение реакции зрачка на свет помогает диагностировать состояние глубоких слоёв глазного яблока, однако длительная дисфункция может привести к нарушению зрительного восприятия.

Хрусталик

За фокусировку и чёткость зрения отвечает хрусталик. Эта структура представлена двояковыпуклой линзой с прозрачными стенками, которая удерживается ресничным пояском. Благодаря выраженной эластичности хрусталик может практически моментально менять форму, регулируя чёткость зрения вдали и вблизи.

Чтобы увиденная картинка получалась корректной, хрусталик должен быть абсолютно прозрачным, однако с возрастом или в результате болезни линзы могут мутнеть, вызывая развитие катаракты и, как следствие, нечёткость зрения.

Возможности современной медицины позволяют заменить человеческий хрусталик имплантом с полным восстановлением функционала глазного яблока.

Стекловидное тело

Поддерживать шарообразную форму глазного яблока помогает стекловидное тело. Оно заполняет собой свободное пространство задней области и выполняет компенсаторную функцию.

Благодаря плотной структуре геля стекловидное тело регулирует перепады внутриглазного давления, нивелируя негативные последствия его скачков.

Кроме того, прозрачные стенки ретранслируют световые лучи непосредственно на сетчатку, благодаря чему складывается полная картинка увиденного.

Роль сетчатки в строении глаза

Сетчатка — одна из самых сложных и функциональных структур глазного яблока. Получая от поверхностных слоёв световые пучки, она преобразует эту энергию в электрическую и передаёт импульсы по нервным волокнам непосредственно в мозговой отдел зрения. Этот процесс обеспечивается благодаря слаженной работе фоторецепторов — палочек и колбочек:

  1. Колбочки — это рецепторы детального восприятия. Чтобы они могли воспринимать световые лучи, освещение должно быть достаточным. Благодаря этому глаз может различать оттенки и полутона, видеть мелкие детали и элементы.
  2. Палочки относятся к группе рецепторов повышенной чувствительности. Они помогают глазу видеть картинку в неудобных условиях: при недостаточном освещении или не в фокусе, то есть на периферии. Именно они поддерживают функцию бокового зрения, обеспечивая человеку панорамный обзор.

Склера

Тыльная оболочка глазного яблока, обращённая к глазнице, называется склерой. Она плотнее роговицы, поскольку отвечает за перемещение и поддержание формы глаза.

Склера непрозрачна — она не пропускает световые лучи, полностью ограждая орган с внутренней стороны. Здесь сосредоточена часть сосудов, питающих глаз, а также нервные окончания.

К наружной поверхности склеры прикреплены 6 глазодвигательных мышц, регулирующих положение глазного яблока в глазнице.

На поверхности склеры расположен сосудистый слой, обеспечивающий поступление крови к глазу.

Анатомия этого слоя несовершенна: здесь нет нервных окончаний, которые могли бы сигнализировать о появлении дисфункции и прочих отклонений.

Именно поэтому офтальмологи рекомендуют обследовать глазное дно не реже 1 раза в год — это позволит выявить патологию на ранних стадиях и избежать непоправимого нарушения зрения.

Физиология зрения

Чтобы обеспечить механизм зрительного восприятия, одного глазного яблока недостаточно: анатомия глаза включает ещё и проводники, которые передают полученную информацию в головной мозг для расшифровки и анализа. Эту функцию выполняют нервные волокна.

Световые лучи, отражаясь от предметов, попадают на поверхность глаза, проникают через зрачок, фокусируясь в хрусталике.

В зависимости от расстояния до обозримой картинки хрусталик с помощью цилиарного мышечного кольца меняет радиус кривизны: при оценке удалённых объектов он становится более плоским, а дли рассмотрения предметов вблизи — наоборот, выпуклым.

Этот процесс называется аккомодацией. Он обеспечивает изменение преломляющей силы и места фокуса, благодаря чему световые потоки интегрируются непосредственно на сетчатке.

В фоторецепторах сетчатки — палочках и колбочках — световая энергия трансформируется в электрическую, и в таком виде её поток передаётся нейронам зрительного нерва. По его волокнам возбуждающие импульсы перемещаются в зрительный отдел коры головного мозга, где информация считывается и анализируется. Такой механизм обеспечивает получение визуальных данных из окружающего мира.

Строение глаза человека с нарушением зрения

Согласно статистике, более половины взрослого населения сталкиваются с нарушением зрения. Наиболее распространёнными проблемами являются дальнозоркость, близорукость и сочетание этих патологий. Основной причиной этих заболеваний служат различные патологии в нормальной анатомии глаза.

При дальнозоркости человек плохо видит предметы, расположенные в непосредственной близости, однако может различить мельчайшие детали удалённой картинки. Дальняя острота зрения — бессменный спутник возрастных изменений, поскольку в большинстве случаев она начинает развиваться после 45-50 лет и постепенно усиливается. Причин этому может быть много:

  • укорочение глазного яблока, при котором изображение проецируется не на сетчатке, а за ней;
  • плоская роговица, не способная к регулировке преломляющей силы;
  • смещение хрусталика в глазу, приводящее к неправильной фокусировке;
  • уменьшение размеров хрусталика и, как следствие, некорректная передача световых потоков на сетчатку.

В отличие от дальнозоркости, при миопии человек детально различает картинку вблизи, однако дальние объекты видит расплывчато. Такая патология чаще имеет наследственные причины и развивается у детей школьного возраста, когда глаз испытывает нагрузки во время интенсивного обучения.

При таком нарушении зрения анатомия глаза также изменяется: размер яблока увеличивается, и изображение фокусируется перед сетчаткой, не попадая на её поверхность.

Ещё одной причиной близорукости может служить излишняя кривизна роговицы, из-за чего световые лучи преломляются слишком интенсивно.

Нередки ситуации, когда признаки дальнозоркости и близорукости сочетаются. В этом случае изменение строения глаза затрагивают и роговицу, и хрусталик. Низкая аккомодация не позволяет человеку в полной мере видеть картинку, что свидетельствует о развитии астигматизма.

Современная медицина позволяет исправить большинство проблем, связанных с нарушением зрения, однако куда проще и логичнее заранее побеспокоиться о состоянии глаз.

Бережное отношение к органу зрения, регулярная гимнастика для глаз и своевременное обследование у офтальмолога помогут избежать множества проблем, а значит, сохранить идеальное зрение на долгие годы.

Источник: https://www.oum.ru/literature/anatomiya-cheloveka/anatomiya-glaza-stroenie-i-funktsii/

Строение глаза и его работа

Глаз расположен в глазничной впадине черепа. От костей глазничной впадины к наружной поверхности шаровидного глазного яблока подходят мышцы, которые его поворачивают. В дальнейшем мы особо остановимся на работе этих мышц, поскольку, как будет показано, они имеют самое прямое отношение к силе нашего зрения.

Читайте также:  Варианты имен для кота мальчика: редкие и красивые клички, необычные мужские

Органы, окружающие глаз, предназначены Природой для того, чтобы защитить его от вредных воздействий внешней среды. Волоски бровей отводят в стороны стекающую со лба жидкость (чаще всего это капли пота), ресницы препятствуют попаданию в глаз пылинок.

Слезная железа, расположенная у наружного угла глаза, также принадлежит к его защитным органам.

Она выделяет слезу, которая все время смачивает поверхность глазного яблока, не дает подсыхать живым клеткам внешнего слоя глаза, согревает его, смывает попадающие на глаз посторонние частицы, а затем стекает из внутреннего угла глаза по слезному каналу в  носовую  полость.

Как же устроен глаз? Плотная белочная оболочка {склера), покрывающая глаз снаружи, защищает его от механических и химических повреждений, от проникновения посторонних частиц и микроорганизмов. В передней  части глаза  оболочка эта  переходит

в прозрачную роговицу, которая, подобно застекленному окну, свободно пропускает лучи света. Средняя — сосудистая оболочка пронизана густой сетью кровеносных сосудов, которые снабжают глазное яблоко кровью. На внутренней поверхности этой оболочки тонким слоем лежит красящее вещество — черный пигмент, который поглощает световые лучи.

В передней части глаза, напротив роговицы, сосудистая оболочка переходит в радужную, которая может иметь различный цвет — от светло-голубого до черного. Он определяется количеством и составом содержащегося в этой оболочке пигмента. Роговица и радужная оболочка не прилегают друг к другу плотно.

Между ними находится пространство, заполненное  совершенно  прозрачной  жидкостью.

Роговица и прозрачная жидкость пропускают световые лучи, которые попадают внутрь глазного яблока через зрачок — отверстие, расположенное в середине радужной оболочки. Стоит попасть внутрь глаза лучам яркого света, как происходит рефлекторное сужение отверстия зрачка.

При слабом же освещении зрачок, наоборот, расширяется. Непосредственно за зрачком находится прозрачный хрусталик, имеющий форму двояковыпуклой линзы и окруженный кольцевой, или, по-иному, цилиарной мышцей.

По мнению западной науки, способность   кольцевой   мышцы   к   сокращению

и расслаблению, с одной стороны, и природная эластичность хрусталика — с другой, являются главными условиями фокусировки в глазу. К этому вопросу мы еще вернемся в дальнейшем, здесь же мимоходом отметим, что мы разделяем это убеждение наших западных  коллег  только  отчасти.

Пройдя сквозь хрусталик, а затем через прозрачное, словно чистейший хрусталь, стекловидное тело, которое заполняет собой всю внутреннюю часть глазного яблока, лучи света попадают на внутреннюю, очень тонкую оболочку глаза — сетчатку.

Сетчатка, несмотря на то, что она крайне тонка (ведь толщина ее колеблется от 1/33 см до менее половины этой величины), имеет чрезвычайно сложное строение. Она состоит из восьми слоев, из которых, как считается, только один связан с восприятием зрительных образов.

Этот слой состоит из мельчайших палочкообразных и колбочкообразных клеток, отличающихся друг от друга формой и весьма неравномерно распределенных по сетчатке. Эти световоспринимающие клетки называются зрительными рецепторами.

В них под действием раздражения, вызываемого лучами света, возникает возбуждение, которое проводится по отросткам нейронов, собирающимся в зрительный нерв. По нему возбуждение попадает  уже  в  головной  мозг.

Расположенные в сетчатке зрительные рецепторы делятся, как мы сказали, на две отличающиеся друг от друга по строению и функциям группы — на так называемые палочки и колбочки. Палочки раздражаются слабым сумеречным светом, но не обладают способностью воспринимать цвет.

Колбочки раздражаются только ярким светом и способны воспринимать цвета. Возникающие в рецепторах возбуждения передаются по центростремительным нейронам, отростки которых в определенном участке сетчатки собираются, как мы сказали, в зрительный нерв.

Он проходит через все оболочки глазного яблока, выходит из него и направляется к головному мозгу. В том месте, где зрительный нерв выходит из сетчатки, в ней нет световоспринимающих клеток. Изображения предметов, возникающие на этом участке, не воспринимаются нами.

Поэтому он  и  получил  название  слепое   пятно.

В середине сетчатки, прямо напротив зрачка, находится маленькое круглое возвышение — так называемое желтое пятно, представляющее собой скопление колбочек. Оттого наиболее ясно мы видим те предметы, которые находятся прямо против зрачка. В центре этого пятна помещается фовеа — глубокая ямка более темного цвета.

В центре ямки нет ни одной палочки, а колбочки удлинены и тесно прижаты друг к другу.   Другие   слои   в   этом   месте,   наоборот, чрезвычайно тонки или вообще исчезают.

За пределами центра ямки колбочки становятся толще и реже встречаются, перемежаясь с палочками, численность которых все возрастает по мере продвижения к краям  сетчатки.

Способность желтого пятна давать мозгу детальную информацию о рассматриваемом предмете связана с очень высокой концентрацией здесь световоспринимающих элементов, а также еще и с тем, что каждая колбочка соединена со своим собственным индивидуальным нейроном. Палочки такого индивидуального нейрона не имеют и вынуждены группироваться целыми скоплениями вокруг одной-единственной клетки.

Колбочки есть не только в желтом пятне, но и в остальных участках центральной части зрительного поля, только здесь концентрация их значительно ниже. А на периферии колбочек нет вовсе. Там имеются только палочки — световоспринимающие элементы более высокой чувствительности.

Так как несколько палочек посылают свою информацию в одну и ту же нервную клетку, то в сумерки очень слабо возбужденные палочки общими усилиями могут возбудить свой нейрон и глаз все-таки что-то увидит, тогда как колбочки, которые адресуются лишь к своей собственной нервной клетке, в этом случае бессильны.

    Именно   незначительной    задействованностью колбочек при сумеречном свете объясняется то явление, что для человеческого  глаза  ночью  все  кошки  серы.

Таким образом, к помощи палочек мы прибегаем лишь в сумерках, когда колбочки становятся просто помехой. Мы могли бы видеть ночью гораздо лучше, если бы не привычка фокусировать изображение на желтом пятне — так называемая центральная фиксация.

Поэтому ночью мы гораздо лучше видим предметы, изображение которых оказывается на боковых участках сетчатки, а это происходит, когда мы не смотрим прямо на предмет, который хотим увидеть.

Кстати сказать, для развития этого навыка служит упражнение № 3 V группы (§   20).

Поскольку для ночного зрения полностью или частично бесполезен значительный участок сетчатки — именно тот, которым так привычно и удобно пользоваться днем, то, чтобы хорошо видеть ночью, нужно лишь тренировать при сумеречном свете периферийные участки, то есть те, которые днем приносят нам мало пользы.

Пойдем, однако, далее. Рецепторы глаза воспринимают зрительные раздражения благодаря тому, что на сетчатке возникают изображения видимых нами предметов.

Как же это происходит? Лучи от предметов, на которые направлен наш взгляд, проходят   через   роговицу,   жидкость,   находящуюся между нею и радужной оболочкой, хрусталик и стекловидное тело. В каждой из этих сред они изменяют свое направление — преломляются.

Этот процесс преломления световых лучей в оптической системе глаза называют рефракцией. Но более точным было бы понимать под рефракцией преломляющую силу оптической системы глаза.

И тут мы, наконец, подошли к довольно деликатному вопросу, в котором наши взгляды расходятся со мнением ортодоксальной западной науки. Вопрос этот заключается в том, как происходит процесс аккомодации, то есть приспособления глаза к видению на расстоянии.

Однако мы должны заранее предупредить читателя, что не собираемся оскорблять здесь лучшие чувства наших западных ученых коллег или вести с ними сколько-нибудь развернутую полемику по вопросам затронутой области.

Мы просто указываем на то, что происходит, а заботу об уяснении истины целиком оставляем в ведении наших западных друзей.

При рассматривании близких предметов четкое их изображение может возникнуть на сетчатке только в том случае, если преломление лучей в глазу будет большим, чем при рассматривании отдаленных предметов.

И большинство офтальмологов считают,  что  основное  значение для  преломления света в глазу имеет хрусталик.

Они полагают, что мы можем видеть четко как предметы, которые находятся на сравнительно большом расстоянии от нас, так и предметы, что расположены близко к нам, только потому, что двояковыпуклый хрусталик благодаря окружающей его кольцевой мышце может изменять свою кривизну, становиться более выпуклым или более плоским. Когда кольцевая мышца сжимает хрусталик, то он, по их мнению, должен увеличивать свою кривизну; а как только мышца расслабляется, хрусталик, вследствие природной эластичности, вновь уплощается.

При рассматривании близких к глазу предметов кольцевая мышца напрягается, а кривизна хрусталика увеличивается, поэтому преломление лучей в глазу становится большим, и на сетчатке возникает четкое изображение  рассматриваемого   предмета.

Когда же мы вглядываемся в отдаленные предметы, мышцы расслабляются, а хрусталик уплощается, благодаря чему преломление лучей в нем становится меньшим. Вот почему при нормальном зрении на сетчатке глаза во всех случаях должно получаться четкое  изображение   предметов.

Такова в общих чертах точка зрения ортодоксальной офтальмологии. Мы так подробно остановились на ней потому, что, хотя   бы   отчасти,   но   она   справедлива,   и,

чтобы идти дальше, нам надо было усвоить эту сравнительно простую точку зрения.

Однако в действительности все обстоит гораздо сложнее. Надо сказать, что в западной науке теперь существует достаточно влиятельное направление, близкое по многим своим взглядам к точке зрения йогов, которое придерживается совершенно иного мнения на сей счет.

Эта школа считает, что решающим фактором рефракции в глазу являются окружающие глазное яблоко прямые и косые мышцы. По мнению этой школы, роль прямых и косых мышц не исчерпывается тем только, что, сокращаясь, они поворачивают глазное яблоко, позволяя нам тем самым изменять направление взгляда и рассматривать те или иные из окружающих нас  предметов.

Задачей этих мышц прежде всего является изменение формы глазного яблока, которая по мере надобности становится то вытянутой, то уплощенной в переднезадней оси, что и позволяет добиваться четкости изображения предметов на сетчатке в соответствии с расстоянием, на которое они удалены  от  нашего   глаза.

При таком понимании мнение официальной западной офтальмологии, считающей, будто форма глазного яблока неизменна, оказывается несостоятельным. Именно это мнение породило теорию, которая пытается объяснить аномалии рефракции врожденной неправильностью формы глазного яблока.

Тем самым эта теория приписывает заслугу в аккомодации исключительно работе кольцевой мышцы и изменению хрусталиком своей кривизны. При этом врожденная якобы удлиненность глазного яблока должна быть причиной миопии, а укороченность — соответственно гиперметропии .

Однако поскольку форма глазного яблока по мере надобности непрестанно меняется, то и эта теория точно так же, как и породившее ее мнение, оказывается не заслуживающей   внимания.

Хорошо известно, что после удаления хрусталика из-за катаракты глаз нередко способен аккомодировать так же, как и прежде. Сам по себе факт этот безжалостно перечеркивает рефракционную теорию ортодоксов. Д-р Уильям Бейтс по этому поводу пишет, что он наблюдал множество подобных    случаев.    Пациенты    при    этом    не

только читали шрифт диамант в своих очках для дали с расстояния 33, 26 и менее сантиметров (труднее всего в таких случаях читать именно на очень маленьких расстояниях), но один пациент мог это делать вообще без очков.

При этом, как указывает д-р Бейтс, ретиноскоп  во всех случаях показывал, что происходит реальная аккомодация и что осуществляется она не каким-нибудь замысловатым способом, какими догматики пытаются объяснить этот неудобный для них феномен, а путем точной подгонки фокуса к соответствующим расстояниям.

Поэтому вполне уместно говорить о силе прямых и косых мышц глаза, с одной стороны, и о природной эластичности глазного яблока — с другой.

Подводя итог нашему очерку о преломлении световых лучей в глазу, мы скажем, что не разделяем категоричности ни одной из противоборствующих на Западе сторон, поскольку такая категоричность исключала бы правильность противоположной точки зрения.

По   нашему  мнению,   каждая   из  этих  двух теорий справедлива, и их следует не противопоставлять, а рассматривать в единстве.

Однако если деятельность прямых и косых мышц нужно признать как определяющую в преломляющей силе глаза, то за хрусталиком и кольцевой мышцей следует оставить лишь вспомогательную функцию подкоррекции.

Такой подход, думается, объяснит все противоречия и несообразности западных теорий, склонных к излишней исключительности и соперничеству. Не надо думать, будто Природа, этот величайший и совершеннейший конструктор, создает в своих машинах лишние детали или станет терпеть их присутствие, если они таковыми окажутся.

В дальнейшем мы, по мере надобности, еще не раз будем возвращаться к этому пункту, а сейчас вновь обратимся к изображению, которое получается на сетчатке. Поскольку хрусталик представляет собой двояковыпуклую линзу, то изображение предметов, возникающих на сетчатке, в согласии с законами физики оказывается уменьшенным и перевернутым.

Сложный процесс восприятия зрительных раздражений, начатый в сетчатке, заканчивается в зрительной зоне коры больших полушарий. Он осуществляется благодаря зрительному анализатору, который и проводит окончательное различение раздражений.

Именно поэтому мы  различаем  форму  предметов,   их  окраску, величину, освещенность, расположение, движение. Изображение предметов на сетчатке, перевернутое хрусталиком, в головном мозге еще раз переворачивается до совпадения с их реальным расположением.

Это происходит вследствие влияния различных психических причин, среди которых определяющую роль играет взаимодействие возбуждений, поступающих в мозг ото всех  органов   чувств.

Глаз, таким образом, просто световоспринимающее устройство, вроде фотоаппарата или кинокамеры, «видит» же только наш мозг. Это он складывает информацию, полученную от миллионов светочувствительных клеточек нашего глаза, в замысловатые картины; это здесь, в мозге, «проявляются снимки», сделанные глазами.

Именно тем, что видит не глаз и слышит не ухо, а мозг, являющийся посредником нашей души, нашего личного «я» в грубом мире материи, объясняется то курьезное обстоятельство, что мы так часто видим или слышим не то, что есть, а лишь то, что нам уже известно или знакомо.

Сколько раз каждый из нас ловил себя на том, что не приметил какой-либо особенности у предмета, десятки раз нами прежде виденного, пока кто-то другой, знающий, не сказал нам  о  ней!

Источник: https://medn.ru/ioga/5.htm

Adblock
detector